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Abstract

In contrast to “classical” dimensional analysis, whose application is widely described in heat transfer textbooks despite its poor results,
the less well-known discriminated dimensional analysis approach provides a deeper insight into the physical problems involved and much
better results in all cases where it is applied. The basis of this technique is firstly used to test the dimensional homogeneity of the energy
equation for incompressible fluids. It is then applied to the laminar forced convection on flat plates to determine the characteristic lengths of
the problem, drag forces and heat transfer coefficient. Neither the classical Reynolds and Nusselt numbers nor the drag coefficient are relevar
dimensionless parameters for the discriminated dimensional analysis and they do not play a separate (independent) role in the solution o
this kind of problem. Furthermore, the dimensionless groups that really play a separate role are obtained with this technique. The apparen
equivalence between dimensional analysis and scale analysis is discussed.

0 2005 Elsevier SAS. All rights reserved.

Keywords:Discrimination; Dimensional analysis; Energy equation; Laminar forced convection

1. Introduction inafter) to produce order-of-magnitude estimates of the
guantities of interest, a goal beyond the scope of CDA.

Most text-books on conduction and convection heat trans- According to Bejan, “scale analysis is a technique often
fer, both classical [1,2] and modern [3—10], make use of the cqnfu.sed either with the CDA or with the nondimension-
results obtained by dimensional analysis, which we name &lization process of the governing equation, so extended at
“classical dimensional analysis” (CDA, hereinafter), to de- (he research literature”. As regards the differences and sim-
duce, from the large number of variables that are generally |Iar|t|§s between d|scr|m|nated.d|men3|onal anaIyS|s (DDA,
involved in this kind of problem, the dimensionless groups hereinafter) and scale analysis, these are discoursed in a

of variables as a function of which the solutions may be ex- paragraph at the gnd Qf this paper.
pressed. This is, undoubtedly, one of the main advantages Nevertheless, in spite of the advanced level of the above
of CDA, since the number of dimensionless groups which mentioned text-books, the techniques of dimensional analy-

fully describe the problem is much smaller than the number SIS @re simply applied using the typical “non-discriminated”
of non-dimensionless physical quantities that take part in it. dimensional bases. Researchers into convection heat trans-

However, it is important to mention that some presti- fer u?‘:‘. a dl|me?§|onal batge mad;,[Up of fotur or five l:)asm
gious text-books used in teaching and investigation [11,12] quantities (length, mass, time and temperature) usually ex-

scarcely make reference to dimensional analysis. Bejan [12],pres_sed by the symbols (M, T o) or (L. M. T, Q’.e)’ n-
for example, extensively uses scale analysis (SA here_cludmg (or not) the heat quantity, without formally justifying

such an inclusion from the point of view of dimensional

analysis theory. For example, McAdams [1] uses the base

* Corresponding author. (L, M, T,0), whereas Chapman [2] and Grdber [13] use the
E-mail addresspaco.alhama@upct.es (F. Alhama). base L, M, T, Q0,60). This controversy also exists among
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Nomenclature

CDA classical dimensional analysis v cinematic viscosity .................. s 1
cp specificheat.................... kg~tK-1 0 TeMPErature . ... ....ovee e [
DDA discriminated dimensional analysis 0 fluddensity........................ kg3
Fo Fourier numbers= arlg? pc,  volumetric heat capacity.......... ng3.K1L
h specificenthalpy..................... kg1 o’ component of the shear stress tensor associated
heat transfer coefficient ... .. ... .. W2.K-1 to the pressure forces................. N2
k thermal conductivity ............ wh—t.K—1 o shear stresstensor ................... N2
Nu Nusselt numbet= hl/ k £ viscosity coefficient . ............ kognt.s1
p PrESSUIE . ... Thi~2 o proportional
Pr Prandtl number= v/« ~ order of magnitude
SA scale analysis [1 denote the dimensional equation of the enclosed
s specificentropy ................. k1K1 quantity
; ggqeeci.fi.c. i.r;t-e.rﬁ.ail. energy '''''''''''''''''''''''''''''' kg‘l ® Jtalic Ietters(useq to de;ignate the quantities belonging to
v VeloCitY ..o mrt the dimensional base)
w mechanicalenergy ........................ J L length
x,y,z Spatialcoordinates........................ m M mass
Greek symbols T time
0 heat
o thermal diffusivity . . ................. fas 1 2] temperature
3 boundary layer thickness.................. m .
Sik Kronecker delta Subscripts
w dynamic viscosity . .............. k1.5t x,y,z spatial directions

classical authors specialized in dimensional analysis, such adactors”), and, furthermore, excessively increase the number
Bridgman [14], who uses the base of McAdams and Hunt- of non-dimensionless groups, which renders application of
ley [15] who, in turn, use that of Chapman and Gréber. this technique useless, since many of these groups do not
In an attempt to increase the number of dimensions of really take part as independent groups in the solution (as oc-
the base and, as a consequence, reduce the number of diurs in fin-wall assembly problems, where many geometrical
mensionless groups in the problem under study, Mills [8] variables exist); (i) it provides dimensionless groups that do
established a distinction between what he cadisnple di- not play an independent role in the problem. In general these
mensional analysfsand “vectorial dimensional analysis disadvantages are sidestepped by experienced researchers
mentioning that with the last term the lengths measured in without explanation (from the CDA point of view). As we
different directions (coordinates) in space can be adoptedsee below, the use of DDA removes these groups immedi-
as independent dimensions. Historically, the idea of con- ately so that, for example, the form factors are not dimen-
sidering spatial dimensions as “different” dimensions was sionless groups using the discrimination. In spite of all this,
first proposed by Williams [16] in 1892; later, in the second some books, both of general [18] and specific [20] interest,
half of XX century, Huntley [15] used the idea developed and other scientific works [21] devote a great deal of effort
by Williams, introducing the concept of “the method of the to the formal application of DDA to engineering problems,
components of fundamental dimensions”, and Runge [17] particularly in heat transfer.
called it “vectorial dimensions”. Palacios [18] deals rigor- In this work, the dimensional homogeneity of the energy
ously with this subject and sets the basis for applying DDA, equation is studied first from a DDA perspective. Next, as an
including a large number of examples in his book. He says application, the problem of laminar forced convection along
“DDA augments the number of equations in the problem but a flat plate with negligible friction dissipation is studied, pro-
it brings about a diminution in the number of dimensionless viding the characteristic lengths and the drag and heat trans-
groups and the solution becomes more precise”. fer coefficients. It is shown that, from the DDA perspective,
The consequence of using dimensional analysis in the the drag coefficient and the well-known Reynolds and Nus-
classical sense (no spatial discrimination) of Bridgman [14] selt numbers are not relevant dimensionless parameters and
and Langhaar [19] poses two problems: (i) it may introduce do not play an independent role in the solutions. DDA di-
into the solution certain non-dimensionless groups, which rectly provides the truly dimensionless groups that take part
are the ratio between purely geometric quantities, such asin the solution. Finally, similarities between scale analysis
the ratios between characteristic lengths (the so-called “form and DDA are discussed.
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2. Discriminated dimensional analysis ver sus classical different spatial directions. The degeneration of length as-
dimensional analysis sociated to spatial directions, which is inherent in classical
dimensional analysis, permits us to form numbers such as
The variables that take part in a problem should form Reor Nu, or coefficients such as the drag-friction. These
a “physical relationship” that is independent of the system numbers or coefficients are really non-dimensionless para-
of units chosen to measure them, a condition that is termedmeters whose dimensional equations and real meaning (far
“dimensional homogeneity”. The consequence of this con- from that generally assumed in many text books and hand-
dition is that the addends of each of the partial differential books) are provided by DDA.
equations that define the mathematical model of the problem  With regard to nondimensionalization of the differen-
must be dimensionally homogeneous. Now, the dimension-tial equations, which is carried out whenever possible to
less groups relevant to the problem may be deduced eitherdetermine universal solutions, discrimination of the spatial
directly, by combining the variables adequately, using the directions prevents the degeneration alluded to above. Di-
typical techniques of CDA (this procedure is generally used mensionless coordinates are formed by relating spatial co-
when the equations of the problem are unknown), or by ordinates with characteristic lengths of the problem in the
the nondimensionalization of such equations by defining the same direction (if they exist). Again, the discriminated di-
appropriate dimensionless quantities. In the first case, themensionless groups formed (following this procedure) are
dimensional equations of all the variables (velocity, loca- well defined and have the physical meaning associated to
tion, temperature, pressure,) given by their definition,and  the rate or balance between the corresponding addends of
those of all the parameters (viscosity, conductivity, specific the differential equation. Obviously, the number of relevant
heat,...) deduced from the equations or laws by which they dimensionless groups obtained from the nondimensionaliz-
are defined, must be known. So far, the above paragraph aping the equations and from the application of the techniques
plies both to CDA and DDA. proper to DDA is the same.
The essential difference between CDA and DDA [18] is
that in the latter, the spatial coordinates (vectors) and all
the vectorial quantities have dimensional equations in which 3. Dimensional homogeneity of the energy equation for
these spatial coordinates appear explicitly. That is, in DDA incompressible fluids using DDA
there exists the possibility of using different units of mea-
surement for the three coordinates or for the three vectorial The energy equation in fluids results from the balance
components of any quantity of the problem, making these between: (i) time changes in the internal and mechani-
quantities dimensionally independent [18, p. 72]. Of course, cal energy contained in the mass unitpv?/2 + pu)/dt,
other geometries (cylindrical, spherical or intrinsic coordi- (ii) energy flux density associated to the mass transfer,
nates) may be used, depending on the problem under studydiv[(pv2/2 + k)], (iii) energy flux density associated to the
Also, new quantities (such as angles, surfaces, etc.), whosénternal friction processes due to viscosity, which take place
inclusion in the base was not considered before, can now beeither in the whole fluidgrad(0) = 0, or with a non-uniform
included [20, vol. 4]. For example, the angle in the base pro- spatial distribution,div[—ve’], and (iv) heat flux density
vides a new dimensional equation for the angular veloeity,  derived from conduction processes, dependergred (),
different from the classicdlo] = 71, and the surface inthe  derived from the existence of either dissipation processes or
base may be adequate when all the directions contained inheat sources within the fluid; this flux, developedjiad(6)
it are physically equivalent (degenerated) for the particular series, may be approximated tiw[—k grad(6)]. So the en-
problem. Moreover, the mass may also be discriminated to ergy balance may be written as
distinguish the inertial effect from the amount of matter [15], 2
and two time scales can be included in the dimensional based? (PV"/2+ pu) /01
if two simultaneous phenomena of different duration take = —div[(ov?/2+ ) — ve’ —kgrad(®)] (1)
place in the same problem, some quantities or parameters
being associated to one duration and some quantities to the
other. ¢
The main contribution of DDA is that it reduces the
n?mbgrbcl)f dimeﬁsionlless pal_ra;nehters I(for a giv(;an nu(rjnberpg[as/at +vgrad(s)]
of variables in the relevant list) that play an independent /
role in the problem. The discrimination increases the num-  — o3y (8vi/dxi) + grad[k grad(6)] )
ber of equations in the problem of dimensional analysis and  In this equation[ds/dt + vgrad(s)] is the total change
decreases the number of independent dimensionless paradocal and convective) of the specific entropy of the fluid and
meters, which makes the solution more precise. However, p6[ds/dt + vgrad(s)] is the specific storage heat increased
that is not the only advantage. The assumption of only one by time unit. The latter is due to the energy dissipated by the
length in CDA prevents distinction, for example, between viscous processes,, (dv;/dx;), plus the energy introduced
the quantity of shear stress (or inertia forces) associated toin the fluid mass by thermal conductiogr,ad[k grad(6)].

Taking into account certain thermodynamic relations,
onservation laws and the Navier—Stokes equations, Eq. (1)
takes the form:
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The shear tensor of the fluial, is composed of two addends, Applying the previous discussion to the discriminated
one associated to the friction forces and one associated to thdase {,, L, L, 0, T,6, M), we can write:

ressure forcesy;y = o/, — pd;x. Using the more general _

p ik = Oj — DOik g g lotx] = (Lgrade))°T

form for o/,
/ [ey] = (Lgrade).y)*T ™t
oy = [ (0v; /9x) + (dv/0x;i) — (2/3)8i (Bvr/0x1) ] (0] = (Lgradoy.2) 2T~
1l — sZ

+ &8k (@vr/90x1) ®) and ‘e A(9)” may be expressed in matrix form
which takes advantage of the fact that the expression be-(y, ay a)’ (32/3x2 32/3y? 32/312)9
tween square brackets reduces to zero by contragtieri.

Eq. (2) for incompressible fluids reduces to whose addends are dimensionally homogeneous and have

the dimensional equatiofd7 ~1, which is the same as the

36/t +vgrad(®) dimension equation for&f@/&t”land “vgrad(9)”. . o
2 For the heat transfer involving energy conversion (friction
= aA(0) + (v/2cp)[(Bvi /8x) + (Buk/3xi)] 4) heat dissipation) the correct dimensional basé i{, T, 9)

with & = k/(pc,) andv = u/p. For an isotropic and ho-  OF its corresponding discriminated bases [21]. It is easy to
mogeneous medium at rest, whose properties are temperadémonstrate that the first three terms of Eq. (4) are homoge-
ture independent, the above equation takes the form of the"€0US; their dimensional equation betri~!. However, de-
Fourier conduction equaticd /ot = a A (0). duction of the d|menS|o_naI eqt_Jatlc_)n of _the Ias_t term presents
Two cases may be distinguished in the study of heat trans-9reater difficulty. The kinematic viscosity (which character-

fer processes between solid surfaces and fluids in motion:12€S the momentum diffusion) has the typical dimension of a
(i) heat transfer with energy conversion from mechanical to

diffusion coefficient,Li/T, with L | the direction in which
thermal, in which the last term of Eq. (4) is of the same order thelrr]rgjzr:;ntugn 'S_Il‘j'r:f]:izdtﬁzog_rgr_t;_t:aet_\(’)?:o;']tgovse_’ﬁm; .
of magnitude as the other terms, and (ii) hgattransferwithoutdirections’ V(\)IneWIparaIIeI o thel flulidl vellocity (whilcr? CV(\;_
energy conversion, in which the last term is negligible. From incides With the direction of the friction forcel,) and
the point of view of dimensional analysis, Madrid [20,21] be oih I he frict ; T I

formally justifies that, in the first case, the number of dimen- tlet Oiher bnormzih tof t t'e rlctlofncgur Z.iCé‘éa do Icotn;.-
sions in the dimensional base is four, the most extended basege € eL asSe, eTr;c I'?hn Z‘.”a L ISI a et'. n flti
being (., 0,7, 6), whereas in the second case, the number ase (. L1, lddQ i ) 19e 'mensional equations ot the
of dimensions is five, the base increasing by inclusion of the orce, mass and density [19] are,

mass quantity,i{, M, Q, T, 6). In the last case, the dimen- [W]=[Q]= 0, [F]=[W]/[r]= L[lQ

sional equations of each of the terms of Eq. (4) are 1 o 2 D
Uﬂ]=[FYG]==L” o/LT ::LH or

o [36/31]=6T"%; [pl=Im/V]=L;?QT %/L, S, =L°LT's7'QT?

. |
_ , , _ pr-1
e [vograd(®)] = [} ; ;,{vi(3/3x)}0]1 = 6T, since <. inatthe dimensional equation of the dynamic viscqsity

[vi(0/0xi1=T7% from the Newton lawF = 1.S(dv/dn), is:
e The dimensional equation of each of the addends of

A(0) is not the same. Nevertheless, the addends of [l =[F1/[S]lv/n]
aA(0) have the same dimensional equation siacis = LilQ(SL)—l(L”T—l/Ll)_l = LEZLLSfQT
a tensorial quantity and the components of the tensor

) . : . . and that of kinematic viscosity,
have different dimensional equations in DDA. y

[v]=[ul/[p)=LiT™*

Indeed, if discrimination is applied to the length associ- which has the same tensorial character as that of the thermal
ated to the direction of the thermal gradieftraqs), and diffusivity. In rectangular coordinates,
to the surface normal to that direction, namélyaqs), the T S
il=LiT~, i=x,y,z2

dimensional equations éfandpc), are: _
and, using the above bagg|, L, 51, 0.T,6)
-1 —1¢-1
(k1 =1Q1[+]/(IS10/n1) = QT " Syzq)0 Laradte) [(0vi /o)) = L2L 2T 2

1 -1 -1 -1 -1
[pcpl = [mV e, ] = [VH101/101 = Syraqe Lgrade) Q0 ep]l=[Q/mf] = L3721
where V' denotes the volume of the fluidy'] = Sgrads) x [(vi/2¢,)] = LﬁzLiTQ
Lgrade)- In this way, ..
giving

2 -1
le] = [k]/[pcpl = Lgrage) T [(vi/2¢,)(@v; /dx)?] =0T
the typical dimensions of a diffusion coefficient associated In conclusion, Eg. (4) is also homogeneous in the dis-
to the heat diffusion in the direction dfgraqe)- criminated base.
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4. Application. The problem of laminar forced [lo] = L, resulting in a different dimensional equation for

convection along an isothermal flat plate with negligible Rer, [Rg,] = LHLll.

dissipation We have now verified that the classical Reynolds number,
Re, does not play an independent role when using DDA.

4.1. Determination of characteristic lengths and their Now, from the relevant list of Table 1, it is a straightfor-

meanings ward task to obtain a characteristic length of dimension

. _ . ~ [*]1=Ly, thatisl* o (ulo/ po)'/2. In this casel* is what
The relevant list for the mechanical (fluid) problem is we call a “hidden” quantity since it is not explicitly included

formed by the quantities: in the relevant list because it does not belong to the list of
known variables. Indeed, introducing the quantitynto Ta-
o typical steady velocity far from the boundary layey, ble 1,[/*] = L, the rank of the new matrix i& = 4 and
e dynamic viscosity of the fluidy, i =n— H=1.If ¢ is the exponent of each variable in the
o density of the fluidp, dimensionless group, the solution of the equations
o length of the flat platdp.

Evo+61p=0

In addition, the local positions (independent spatial coordi-

nates) should be included in the relevant list if we wish to ~ & T &x + &= 0

investigate local unknown dimensionless groups, an aspect—¢, — ¢, =0
that is not considered here.

Firstly we will investigate what CDA and DDA can tell

as about the above list of quantities. The use of CDA, which €» + &, =0
assumes the basé (T, M) provides only one dimension- provides only one dimensionless gromp = pvol*?/(11lo)

_ -1 _ -1 _
less group, namelyry = pvolop™" = volov™" = Rey, the or m; = Re,(I*/1p)? in terms of the classicaRg, num-
known Reynolds number, which, strictly according to analy- ber [18]

sis dimensional theory, will participate in the solution of the : . . .
problem. As regards DDA, the dimensional equations of the . But, what is the physical meaning bf? Of coursa™ is .
quantities for the basal{, L., S., T, M), have the expo- linked to the variables that define the problem and which
nents shown in the cqurr;nsléf 'Ll'ébl,e 1 '(exponenta aire are linked to the physical process and to the h_ypothesis as-
derived from the Newton law of viscosity). Although a base sume_-d. In _short, the meaning _Uf must_ be denyed from

the dimensionless group associated to it, and this group (and

with three d|scr|m|ngted lengths IS gppllgable, we adopt a all the dimensionless groups that may be deduced from the
complete base that includes the sliding viscous surfaces be-

. ; : : . relevant list) is a balance of certain quantities (mass, forces
cause this variable is more closely related with the physical L
problem. or energy) of the problem. For the quantities of Table 1,

As is well known, the number of the independent dimen- "¢ = pvol*?/(ulo) is the balance between inertial and vis-

sionless groupsi, that may be derived from the variables cous forces, so that is the limit (in theL ; direction) of the
of the relevant Ii’stn isi—n— H whereH is the rank region in which this balance takes place, that is, the thickness

of the matrix of the dimensional exponents [18]. From Ta- of the boundary layer” = §, according to the nomenclature

ble 1,n =4, H =4 andi = 0. In consequence, DDA does extensively used in textbooks. Only within this region may

not p,ermitR,e (= pvolo/10) t(; play an indepenaent rolein the above balance be defined since the fluid outside this re-
o (=

the problem. That is, from the point of view of DDRg, is gion is not su'bjected to inertial or viscous. forces.

a non-dimensionless number, whose dimensional equation 1€ Méaning oRg, = pvio/u in th/ezlammar forced con-

is [Rg,] = LﬁLIZ- The same result would appeaigfwere vection along flat plates is clealRe,l0  lp/I*, the ratio
normal to the sliding surfaces (as occurs in laminar duct flow between the plate length and the boundary layer thickness.
in tubes, wheréy is the radius or the diameter of the tube); Bejan [12] assigns the same meaning%tgjjo/2 basing his ar-

in this case, the only change in Table 1 would be the expo- guments on scale analysis arguments. For other types of flow
nent of the dimensional equation/gf which would become  (internal tube duct flow, transverse flow, etc.), the dimension-

less group that contains the hidden quantityhas the same

—&py — =0

Table 1 meaning of balance between inertial and viscous forces, but
Fluid mechanical quantities and their dimensional exponents neither/* nor Re, (with /g the diameter of the tube) has the
Relevant list meaning given in the flat plate problem.
o lo p 0 o )
L 1 1 4.2. Determination of the force exerted by the fluid on the
L, -1 1 plate (drag force)
Sy -1 -1
L -1 1 _1 This quantity predicts the total drag exerted by the stream

on the plate. This force translates into the pressure drop per
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unit of plate length and hence into the pumping power nec- which is generally written in teaching and research literature
essary to keep the fluid stream flowing. The relevant list as a function of Nusselt and Reynolds numbers,

increases by the quantity of the shear stress (skin friction) Nu, R —1/2 £(P1)

experienced by the plate, to which in accordance with its oG =

definition,z = n(dv/an), DDA gives the dimensional equa- Nu, and Reg, are not relevant dimensionless parameters
tion [t] = MLHT‘ZSIl. Table 2 shows the dimensional ex- from the perspective of DDA and, as a consequence, do not
ponents of the new relevant list. From this and applying the play an independent role in the solution (which is true). The
procedure mentioned in 4.1, the only dimensionless group dimensions of these numbers for the problem under study
that may be formed ig; = tzlo/(pvgu), from which we are:

deducer o (/?vguj/l.o)l/z. Most text books and handbooks [Ny, | = [nlo/k] = Ly LTt

define the skin friction coefficient aS; = ‘L’/(,ovg/Z); sub-
stituting Cr in the above dimensionless group, the known
proportion between the classical Reynclltljs2 number and theang the grouping N%R%—Ol/z o hk—(lop/vop) 2" does
skin friction coefficient appears;; = Rg_ /2. Again, de- indeed play an independent role in the solution.

spite the fact tha€ ; is a dimensionless number in CDA and Finally, if the unsuitable dimensional basej(L ., S,
that some books [6] give it the meaning of “ratio of surface @, T,0) is used, a new dimensionless group will appear,
shear stress to free stream kinetic energy”, from the point namely the Eckert number,

of view of DDA, Cy is neither a relevant dimensionless pa- ._ o2/ (pc ) A

rameter nor can its meaning be the balance between (any) 0 P
quantities associated to the same region of the fluid. The di-Whose physical meaning is associated to the conversion of
mension ofC; is [Cf] = L L1, whichis the ratio between ~ mechanical energy to thermal energy (or vice versa) which
the boundary layer thickness and the plate length. Other-does not take place in this problem. So, the solution given by
wise, an easy inference leads to the expression of the ratiothis base would be incorrect.

of surface shear stress to free stream kinetic energy, that is ] ]
Cylo/I* or Cngl/z (a dimensionless group from the per- T_he asy_mptotlc_ case 6f > .3”. 0r_Pr_<< 1. This hypothe-
spective of DDA)? sis applies to high conductivity liquids, such as metals. The

velocity boundary layer is very small compared with the

thermal boundary layer, so that in most of the region where
heat transfer occurs the fluid velocity is the non-disturbed
S ) velocity, vg. In consequence, friction and inertial forces in

The heat transfer coefficient is a measure of the resistancey,ig region are negligible. From this and eliminatjngnd,

to the heat transfer frpm the quid' §tream to th'e p!ate or vice iy Table 3, the only dimensionless group that may be formed
versa. The relevant list of quantities and their dimensional g

exponents, when friction dissipation is negligible, is shown
bl g o 741 = hlo] kvopep) /2 = hk~L(loa fvo) Y2

which leads to the solution for the heat transfer coefficient
The general cas€ < Pr < c0). From Table 3 and again h o k(looc/vo)_l/z
applying the procedure mentioned in 4.1, the dimensionless
groups that may be formed are

[Re,] = [volo/v] = LEL

4.3. Determination of the heat transfer coefficient

Text books [3,22] include integral and similarity solutions
to this problem. The final result, given as a function of clas-
Ta1= hk*l(lou/vop)l/z §ical dimensionless Nusselt, Reynolds and Prandtl numbers,
is

74,2 = ppcp/pk =v/a =Pr
? Nu, o Re/?Pri/2

the solution being

hk~Y(lop Jvop)Y/? = f(Pr) Table 3
Quantities for solving the heat transfer coefficient and their dimensional
exponents
Table 2 :
Quantities for solving the shear stress and their dimensional exponents Relevant list
- Vo Iy A6 o I k ocp h
Relevant list
Ly 1 1
vo lo p 1 4 L 1 1 1
Ly 1 1 1 S1 -1 -1 -1 -1 -1
L, -1 1 0 1 1 1
S1 -1 -1 -1 T -1 -1 -1 -1
T -1 -1 -2 0 1 -1 -1 -1
M 1 1 1 M 1 1
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As mentioned above, neith&lu, nor R, is a relevant di- list of quantities that defines the order of magnitudé;at
mensionless parameter using DDA. On the contrary, it is shown in Table 4 together with the dimensional exponents.
obvious thaPr is a dimensionless number and that the prod- ~ The solution fors; is

uct Reg,Pr, namely the Peclet number, is not a relevant di- \1/2 _ %\ 1/2

mensignless parameter. The expression k(lox/vo) ~Y/? b o (lok/ pepv?) ™ = (loot/v7)
may be converted tdlu, o« Relo/zPrl/2 by introducing the
kinematic viscosity. In this case, none of the numbhirs,,
Re, or Pr, plays an independent role in the soluti®r. is
associated t&Rein the form of the producRe,Pr = Peg, Tg1= h(lo/lw"‘,oc,,)l/2 = hk‘l(loa/v*)
and this product, in turn, is associatedNay, in the form a kind of Nusselt number associatedstoor v*. The order
Nu, (PrReg,) Y2 = Nu,P —1/2 \which coincides with the  of magnitude of is

only dimensionless group(brovided by the DDA. =172

As we have seen above in 4.1, among the mechanical” o k(loa/v")

aspects of the solid-liquid interface, the (hidden quantity) = The above results represent the contribution of DDA to
characteristic lengthi* was the boundary velocity layer determining the quantitiel ands. The new hypothesis as-
thickness. Also, as regards the thermal aspects, the dimensumed by many texts is that the numerical valueCofs

sionless group deduced mopel—ol/Z_ This group may be  close tog;/é,. Based on this hypothesis, the substitution of

. . _ . *=(8/8 in the expressions & and#h, gives
written in the form &/ k) (loP 01/2), where the characteris- vt =(8:/3u)vo P & 9

tic length, 5;, which makes the ratié/k dimensionless is 8 o (loa8, /vo)*/3
directly associated to the thermal boundary layer thickness, ;, « k (1pa8, /vg) ~Y/3
8 loPe,_Ol/z. In fact, the group }(/k)(loPe,_Ol/z) may be
considered as a modified Nusselt numiagy,/ k. This con-
clusion derived from DDA is not presented in the research
literature or in text books and handbooks. In short, DDA
provides the correct order of magnitude for the heat trans- é; o lo(ukzp_lvag(pcp)_zlg?’)
fer coefficient and clearly describes the role played (or not) h o (k/Io) (ukzp_1v53(pc,,)‘2153)

by the well known classical numbers. _ X ) ) ]

These relations may be written (as is usual in the liter-
ature) in terms of the classical known numbexsif, Re,
andPr) in the forms:

The set of quantities to determine the heat transfer coeffi-
cient, i, is shown in Table 5. The only dimensionless group
that may be formed is
1/2

Now, substitutings, from 4.1 in these expression, and

h may be definitively written as functions of the quantities
of the problem in the form

1/6

-1/6

The asymptotic casg, > §; or Pr > 1. This hypothesis
applies to heavy, high viscosity oils. The velocity boundary
layer is much thicker than the thermal boundary layer (very o<loRe;;1/2Pr‘1/3
close to the plate). In consequence, the fluid velocities andNu, O( Pr1/3Rg1/2

accelerations are very small in this layer and friction and 0 0

inertial effects are negligible, meaning thatind . can be Nevertheless, these final formulae say nothing relevant
eliminated from the relevant list (Table 4). since, on the one handlly,, Pr andRe, are not really di-

In contrast with the former case, the non-disturbed veloc- Mmensionless parameters (from the perspective of DDA) and,
ity vo must not be included in the relevant list singedoes 0N the other, they do not play an independent (separate) role
not characterize the movement in the small region of the in this asymptotic case. _ _
thermal boundary layer. The characteristic velocity within FlnaIIy,llt is interesting to point out again that the expres-
this region must be a small fraction of, namelyv* = Cvo,  SionloRe_ /*Pr=1/3 is the length that makes the ratig k

with C « 1, a dimensionless factor. In short, the relevant dimensionless, that is, the suitable length to form a discrim-
inated dimensionless Nusselt number.

Table 4 Table 5
Quantities for solvings; and their dimensional exponent, > §; or Quantities for solvingh and their dimensional exponent®, > §; or
Pr>1 Pr>1

Relevant list Relevant list

v* A AB k pCp 8 v* lo AB k PCp h
Ly 1 1 Ly 1 1
Ly 1 -1 1 Ly 1 -1
S| -1 -1 S| -1 -1 -1
0 1 1 0 1 1 1
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5. Discriminated dimensional analysis and scale accepted meanings) and, from a fundamental point of view,
analysis neither method permits such these numbers to play an inde-
pendent role in this kind of problem or gives them immediate
In our opinion, the relationship between SA and DDA is physical meaning.
more than apparent although the formalism by which each
technique is applied is quite different. While SA starts from
the differential equations of the problem derived from the 6. Conclusions
assumed hypothesis, DDA leaves the mathematical model
aside. Nevertheless, an insight into the problem and its hy-  Discriminated dimensional analysis has been applied to
pothesis is essential for precisely describing the relevant listdemonstrate the dimensional homogeneity of the energy
of quantities that take part in the problem. Taking into ac- equation for incompressible fluids. In contrast with classi-
count (or not) an addend in the differential equation of the cal dimensional analysis, in the discriminated dimensional
problem in order to establish a balance in SA is equivalent analysis, both spatial coordinates and mechanical or thermal
to introducing or deleting from the relevant list the char- properties (such as viscosity and thermal conductivity) have
acteristic parameter associated to that addend in DDA. Fordifferent dimensional equations, depending on the spatial di-
example, if the viscous forces are negligible in the balance rections. This fact provides a more precise insight into the
of forces, the viscosity is deleted from the relevant list. SA meaning of the terms that take part in the energy equation.
takes the simplified Navier-Stokes (momentum) equation  The application of discriminated dimensional analysis to
for a flat plate under forced convection (which assumes the laminar forced convection on an isothermal flat plate, with
existence of a thin boundary layer proposed by Pradgltl,  negligible dissipation, leads to the final solution of the (i) ve-
and, by manipulating this equation (referring the variables locity and thermal boundary layer thickness, (ii) drag co-
to characteristic values such as the length of the platéhe efficient and (jii) heat transfer coefficient. These solutions,

boundary layer thickness,, the non-disturbed velocityy, which cannot be obtained by classical dimensional analysis,
etc.) the order of magnitude 6f is determined. This is the  agree with those deduced by the application of numerical,
fundamental contribution of SA. analytical and scale analysis procedures.

Formally, in the flat plate problem studied, SA takes two In discriminated dimensional analysis, the classical num-

scale lengths and operates with this hypothesis in the simpli-bersNu and Re are not relevant dimensionless parameters

fied equation to look for the results. But, since the equations and, consequently, they do not play an independent role

of the model are homogeneous, might we expect different in the solutions. Hence the combinationRé&and Pr that

results from those obtained with DDA? appears in many solutions is artificial. Furthermore, dis-
The correct application of the DDA method requires criminated dimensional analysis provides the characteristic

a deep knowledge of the theory under study to establishlengths that take part in the “modified” Nusselt number,

both the appropriate dimensional basis of that theory and Nu= hl*/k, to make it a “discriminated” relevant dimen-

the precise variables of the relevant list. From this, the or- sionless parameter.

der of magnitude of the boundary layer thickness (a hidden  Finally, when the connection between scale analysis and

quantity) can be obtained as a function of those quantities. discriminated dimensional analysis was studied in detail, it

In the application of DDA if the variables of the relevant was seen that both methods lead to similar results despite the

list are well established, and if hidden quantities can be de- differences in the way they were applied.

rived from them, such hidden quantities will have a precise

physical meaning in the problem. Another simple example

follows. For a finite 1-D isothermal flat plate of constant References

diffusivity, «, and thicknesgy, subjected to a step temper-

ature at the boundary surfacesd, the relevant list of the [1] W.H. McAdams, Heat Transmission, third ed., McGraw-Hill, New

: : . York, 1954.
variables is set up byA@, o andlo. From these variables, [2] A.J. Chapman, Heat Transfer, Macmillan, New York, 1960.

a CharaCte”Sj“C. time (a hidden_ quantit_y)_ may be Optained’ [3] V.S. Arpaci, P.S. Larsen, Convection Heat Transfer, Prentice-Hall, En-

™= l(z)/oc. This is the time required to finish the cooling or glewood Cliffs, NJ, 1984.

heating transient problem. [4] J.H. Lienhard, A Heat Transfer Textbook, second ed., Prentice-Hall,
Finally, another important question concerns the connec- __ Englewood Cliffs, NJ, 1987.

. . F.M. White, H Mass Transfer, Addison- [
tion between some of the classical numbeRe (Nu, Pe, [5] j ite, Heat and Mass Transfer, Addison-Wesley, Reading, MA,
etc., which are n'Ot dimensionless in DDA) and .the varl-  [6] F.Kreith, M.S. Bohn, Principles of Heat Transfer, PWS, Boston, 1997.
able groups provided by SA and DDA. Firstly, neither SA  [7] M.C. Potter, D.C. Wiggert, Mechanics of Fluids, Prentice-Hall, Engle-
nor DDA raises such a question. These numbers may be  wood Cliffs, NJ, 1997. _ _
introduced into the solutions provided by SA and DDA to {g} g-'; “ﬁ"'s'lHean TAragSfer' Ere”t'&e'Ha”'tEngﬁWOt"d cd"flﬁ' NJ'T1999f'

. . .P. Kessler, R.A. Greenkorn, vMlomentum, Heat, an ass lranstrer,
compare classical results of text boolfs and the research lit- Marcel Dekker, New York, 1999,
erature. Both methods are able to assign the same real meanioj F.p. incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer,

ings to these classical numbers (different from the generally  wiley, New York, 1996.



C.N. Madrid, F. Alhama / International Journal of Thermal Sciences 44 (2005) 333-341 341

[11] L.D. Landau, E.M. Lifshitz, Mecanica de Fluidos, Reverté, Barcelona, [18] J. Palacios, Dimensional Analysis, Macmillan, London, 1964.

1991. [19] H.L. Langhaar, Dimensional Analysis and Theory of Models, Wiley,
[12] A. Bejan, Convection Heat Transfer, second ed., Wiley, New York, New York, 1951.

1995. [20] A. Herranz, A. Arenas, Andlisis dimensional y sus aplicaciones,
[13] H. Grober, S. Erk, Die Grundgesetze der Warmeibertragung, vols. I, 1l, lll and IV, Universidad de Murcia, 1989.

Springer, Berlin, 1933. [21] C.N. Madrid, Desarrollo y aplicaciones de la teoria de andlisis dimen-
[14] P.W. Bridgman, Dimensional Analysis, Yale University, 1922. sional de Palacios en la transmisién de calor, Tesis doctoral, Granada,
[15] H.E. Huntley, Dimensional Analysis, McDonald, London, 1952. 1987.
[16] W. Williams, On the relation of the dimensions of physical quantities [22] W-M. Kays, M.E. Crawford, Convective Heat and Mass Transfer, third

to directions in space, Phil. Mag. 34 (1892) 234. ed., McGraw-Hill, New York, 1993.

[17] C. Runge, Enc. Math. Wiss. (5,1), London, 1952.



